Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 23, 2026
-
Free, publicly-accessible full text available April 23, 2026
-
Images are often corrupted with noise. As a result, noise reduction is an important task in image processing. Common noise reduction techniques, such as mean or median filtering, lead to blurring of the edges in the image, while fuzzy filters are able to preserve the edge information. In this work, we implement an efficient hardware design for a well-known fuzzy noise reduction filter based on stochastic computing. The filter consists of two main stages: edge detection and fuzzy smoothing. The fuzzy difference, which is encoded as bit-streams, is used to detect edges. Then, fuzzy smoothing is done to average the pixel value based on eight directions. Our experimental results show a significant reduction in the hardware area and power consumption compared to the conventional binary implementation while preserving the quality of the results.more » « less
-
The separation of manufacturing and design processes in the integrated circuit industry to tackle the ever increasing circuit complexity and time to market issues has brought with it some major security challenges. Chief among them is IP piracy by untrusted parties. Hardware obfuscation which locks the functionality and modifies the structure of an IP core to protect it from malicious modifications or piracy has been proposed as a solution. In this paper, we develop an efficient hardware obfuscation method, called Mystic (Mystifying IP Cores), to protect IP cores from reverse engineering, IP over- production, and IP piracy. The key idea behind Mystic is to add additional state transitions to the original/functional FSM (Finite State Machine) that are taken only when incorrect keys are applied to the circuit. Using the proposed Mystic obfuscation approach, the underlying functionality of the IP core is locked and normal FSM transitions are only available to authorized chip users. The synthesis results of ITC99 circuit benchmarks for ASIC 45nm technology reveal that the Mystic protection method imposes on average 5.14% area overhead, 5.21% delay overhead, and 8.06% power consumption overheads while it exponentially lowers the probability that an unauthorized user will gain access to or derive the chip functionality.more » « less
An official website of the United States government
